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Synopsis 

An exact procedure for the objective analysis of physical data on polymers, such as volume-tem- 
perature, near known or suspected transition points, is presented. Standard computerized linear 
and polynomial regression techniques are employed for Y = f ( X ) .  A set of models typical of known 
data behavior near polymer transitions has been developed. Several sets of data for testing these 
models were synthesized, having a built-in random error of 0.075%. Particular emphasis is placed 
on the residual pattern as a function of X where a residual, RES = Y(observed) - Y(calcu1ated). 
RESEE, where SE is the standard error in Y(calculated) is also employed. Residuals for the different 
models tested against the several sets of synthetic data provide discrimination or recognition patterns 
to apply when examining unknown bodies of data. We start on unknown data with the simplest 
possible models, a straight line and a quadratic. These yield residual patterns which guide one to 
more complex models, which in turn give new residual patterns. The correct model is approached 
objectively as a limit. We emphasize that these regression techniques can only describe the data 
but not interpret its physical meaning. These techniques are applied to a detailed analysis of V--T 
data by Wilson and Simha on poly(cylopenty1 methacrylate) which show that V--T data above Tg 
follows two quadratics intersecting at  148-149OC. We identify this intersection as the liquid-liquid 
transition temperature, Til, in basic agreement with the suggestion of Wilson and Simha. 

INTRODUCTION 

This series of papers is concerned with computerized regression techniques 
for handling and interpretation of physical data in the region of known or sus- 
pected transitions and relaxations in polymers. The main types of physical data 
considered are thermodynamic quantities which vary with temperatures such 
as length L ,  volume V, and enthalpy H ,  and their respective derivatives a’ = 
( l / L ) ( d L / d T ) ,  a = ( l / V ) ( d V / d T ) ,  and C, = dH/dT.  Certain types of kinetic 
data such as diffusion constant D ,  preferably DO at zero concentration of diluent; 
and zero shear melt viscosity qo are also considered. In such cases the data are 
plotted as log Do or log 70 as a function of 1 /T;  or as a function of 1 / (T  - To), 
where To is a reference temperature. 

It is generally known from mechanical and electrical spectro~copyl-~ that 
polymers possess a small number of transitions along the temperature scale. For 
T in Kelvins, these transitions tend to lie at  or near: <0.50 Tg; 0.75 Tg; Tg; 1.2 
Tg;  0.85 T ,  and T,; Tg is the glass transition and T,  is the melting point. This 
has been covered in several recent  review^.^-^ Except in highly crystalline or 
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highly crosslinked specimens, Tg receives unambiguous interpretation by C,-T, 
L-T, and V-T data are fairly clear at secondary  transition^,^-^^ lying below 
but not above Tg. A transition in the liquid state of amorphous polymers above 
T, is the subject of contr~versy.~,~ Our regression techniques will be used to 
locate Tu in poly(cyclopenty1 methacrylate). 

Semicrystalline polymers are more complex to analyze because crystallinity 
reduces the absolute intensity of all amorphous phase transitions and may alter 
their relative i n t e n ~ i t i e s . ~ ~ J ~ - ~ l  This is especially true of a highly crystalline 
polymer like polyethylene. For example, Stehling and MandelkernZ0 report 
L-T data on fractions of linear PE from which they deduce a Tg of -128OC. 
But Davis and Eby?l from V-T studies on a heterogeneous specimen of linear 
PE, arrive at a Tg of about -30°C. Both are observing amorphous phase tran- 
sitions and the lOOK difference is not likely to be resolved by regression analysis. 
Because of problems such as this in crystalline polymers, it is advisable first to 
treat only amorphous polymers and copolymers. 

There are two aspects to be considered: (1) the quality of the physical data 
which depends on the sample, its thermal history, the apparatus, and techniques; 
(2) interpretation of the data as regards location of transition temperatures. We 
propose for (2) the use of highly objective computer techniques to accomplish 
four closely related objectives: 

a. error-free plotting of the data; 
b. rejection of data points which appear to be clearly in error; 
c. treatment of the data by a small group of statistical procedures; 
d. computer-drawn least-squares regression fitting of the data by one or more 

straight lines or polynomials, as suggested by c. 
Partly, we plan to develop a set of models which permit objective discrimination 
between alternate choices of interpreting a given body of data. 

Statistical procedures for such data analysis are widely available and routinely 
used by professional statisticians.22-28 However, the latter are not generally 
aware of bodies of data of interest to us nor of the physical significance of such 
data. Two of us (R.F.B. and R.L.M.) have been quite familiar with the literature 
on polymer transitions and with existing problems and confusion concerning 
its interpretation. This paper attempts to merge the two required backgrounds 
and to arrive at a set of recommended statistical procedures designed principally 
but not exclusively for polymer scientists. The plan to be followed in this paper 
includes: 

1. Development of two general models to represent physical data in the region 
of a transition. 

2. Development of five sets of synthetic data representing different models 
of expected data. 

3. Applying regression analysis to this synthetic data of precisely known 
characteristics. 

4. Development from this synthetic data of a set of recognition or discrimi- 
nation patterns to be used with real data of generally unknown characteris- 
tics. 

5. Application of these techniques to data found in the literature, starting in 
this paper with a V-T example, and proceeding in subsequent publications with 
other types of physical data. 
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Y 

POLYNOMIAL 

Models for Describing Data 

As a result of studying many types of physical data for numerous polymers 
near known or suspected transitions and relaxations, two general models have 
been developed. The first is illustrated in Figure 1. It shows only one of a very 
large number of possible shapes. 

Briefly, N1 data points, at regular or irregular spacing along the T axis, lie on 
one straight line, L1, followed by N ,  data points on the curved section followed 
by N2 data points along straight line Lp. [A quadratic transition function is likely 
to be an approximation of a more complex function. For a complete mathe- 
matical discussion of this problem, and the optimal location of experimental data 
points, see Park, Ref. 28(b).] Other data points lying below L1 and above L2 are 
ignored. The curved section will have an average radius of curvature, R, and 
an actual radius R at any T with R = f (T) .  Extension of the two straight lines 
gives a temperature of intersection, Ti. The angle 8 measures the sharpness of 
the intersection. Equations for lines L1 and L2 and related quantities are: 

8 = tan-l B2 - tan-lB1 

N = N1+ N ,  + N2 

1. Single straight line: N ,  = N2 = 0, N1 = N .  
2. Two straight lines: N ,  = 0, i? = 0. 
3. Three straight lines: R = 00, N ,  = N12. 
4. Polynomial: N1 = Np = 0,  N ,  = N ,  R = f ( T ) .  
5. One straight line and one curved section: let either N1 or Np = 0. 

(4) 

(5) 

Following are the variations of Figure 1 most likely to be of interest. 
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In general we consider mainly first and second degree polynomials but occa- 
sionally up to fifth degree. Our computer program can handle up to a fifteenth 
degree polynomial. 

As will be seen later, we routinely fit any new unknown body of data to a linear 
and to a quadratic regression analysis. In general, neither give a satisfactory 
fit. Objective guides have been developed to decide which variation(s) of the 
model in Figure 1 best represents the data. 

While all examples in this study are based on Y = f ( T ) ,  it is clear the methods 
are general to Y = f ( X ) ,  where X might be velocity, shear rate, cross-sectional 
area per polymer chain, molecular weight, or other physical parameters for which 
there is a transition in Y or in dYIdX .  

We wish to emphasize that the model shown in Figure 1 using V-T data has 
long been accepted as characteristic of Tg. Geez9 has used this model as a formal 
definition of Tg with the extrapolated intersection point Ti being defined as Tg. 
A single figure (Fig. 1) in a paper by Bywater and T o p o r o ~ s k i ~ ~  shows three V-T 
plots indicating two intersecting straight lines, three straight lines, and two 
straight lines connected by a curved section depending on the is0 and syndio 
content of PMMA. Figure 1 type behavior for L-T data below Tg has been 
reported on numerous occasions by Simha and his co l lab~ra tors .~-~~ 

Our early studies suggested the occasional need of a special, more sophisticated 
model than that shown in Figure 1, namely, two or more intersecting polynomials, 
not necessarily of the same degree. As shown schematically in Figure 2, there 
are N ,  (1) data points on the lower curve, N ,  (2) on the upper one. In general 
each will have a different average radius of curvature, R1 and I&. For simplicity, 
we treat the case of two quadratics Q1 and Q2, since an example of this appears 
later. We have 

I 1 

0 
4 

I 

e 
4 
4 

m 
T i  

300 500 7 0 0  
X 

100 

Fig. 2. More sophisticated model consisting of two polynomids, not necessarily of the same degree 
but commonly both quadratics. ??I and I?z are average radii of curvature. The first derivative of 
these polynomials gives a pair of intersecting straight lines, similar to those in Figure 1. (See Fig. 
12.) 
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Q2: Yz = A2 + B2T + C2T2 
The intersection temperature is 

(7) 

However, for bodies of data examined thus far (see Figures 12 and 13 later) 
curvatures are slight with the C1 and C2 terms being quite small. Hence eq. (8) 
is not very reliable. 

A preferred procedure is to calculate and plot dY/dT for the entire body of 
data. If eqs. (6) and (7) hold, two straight lines result, and their intersection 
yields Ti. An example of this appears later in Figure 12. 

The Computer Program 

Tabulated data of Y = f (  T )  are card punched. This information is transferred 
to punched tape which is used by the computer. A standard statistical program 
then calculates the following quantities: 

a. coefficients of the equation best fitting the data; 
b. standard error (SE) in Y(calc), usually designated P ( Y  hat); 
c. coefficient of correlations, R2,  for first (or any) degree polynomial; 
d. the residual (RES), Y(observed) - Y(calculated), for each value of T; in 

e. a chart paper printout of the ratio RES/SE against the consecutive number 

f. the data points are plotted on an X - Y recorder, and the regression curve 

The following routine was developed by us, although numerous variations are 

1. Print out all of the data points to give a large scale (8 X 10 in.) plot of the 

2. Select a portion of the data for detailed analysis, for example, one or several 

3. Plot this more limited set of data for visual inspection. 
4. Compute and plot a linear least squares first degree line. For the majority 

5 .  Compute and plot a second degree equation. It is usually less apparent 

6. Compute and plot higher degree polynomials as desired. 
7. Inspect the RES/SE plots for the linear and quadratic fits. As will be seen 

later, some characteristic patterns emerge: If a perfect fit is achieved, the 
RES/SE points are random about zero and lie within the limits of f 2 .  If the 
actual data require two straight lines, the RES/SE have a characteristic pattern 
for both the first and second degree fits. It will be obvious by inspection of the 
RES/SE plots that the data follow two straight lines intersecting at  a specific 
data point (or between two data points). 

8. With this objective information from the RES/SE plot, one can now ask 
the computer to fit the data with, for example, two straight lines. Different 
symbols are used for each set of data. 

computer language, RES = Y - P; 

of each data point (order of increasing T); SE is the standard error in P; 

is drawn in automatically. 

possible: 

actual data for visual inspection. 

of the three regions, T < T g ,  T = T, f 50K, T > Tg.  

of cases to be considered it is an obvious nonfit. 

but a simple quadratic seldom gives a satisfactory fit near a transition. 
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9. As a final check, one notes the RES/SE plots for the two straight lines 
should both be random about zero. One can also compare the RES/SE values 
for the two straight lines with the same for the quadratic or higher polyno- 
mial. 

Development of Ideal Synthetic Data 

Early studies on actual Y = f ( T )  data quickly revealed three characteristic 

1. Lack of objective, a priori knowledge of what fit to expect (except, of course, 

2. Experimental errors in the data. 
3. Lack of sufficient data points, particularly in critical regions of T.  

limitations: 

near Tg). 

It therefore seemed desirable to synthesize some data of precisely known char- 
acteristics, patterned after the model in Figure 1. Five cases, all with the same 
total number of data points were considered: namely, two straight lines with 
a curved connecting section, three straight lines, two intersecting straight lines, 
one straight line, and a quadratic. This body of synthetic data was generated 
graphically and was essentially error free. 

One cannot properly perform a regression analysis on such ideal data because 
of frequent divisions of quantities, O/O, as both RES and SE approach zero. All 
real data contain random errors. The ideal data were consequently modified 
on a sequential basis by the formula: 

Y = Y(idea1) + M(0.5 - RN) (9) 

where RN is a random number between 0 and 1 generated by a Texas Instru- 
ments TI-58 Programmable Computer software program, a further sophistication 
would have been to use normally distributed random errors. M is a numerical 
multiplier which makes the second term on the rhs a reasonable fraction of 
Y(idea1). At first, the product M(0.5 - RN) was selected to be 1% of the mid- 
range of Y(idea1). One could not distinguish between the cases of two straight 
lines connected by curvature and a quadratic fit. The multiplier M was then 
selected to give a percentage of error, midrange, of 0.075%, which is typical of 
some of the better data in the literature. This was much more satisfactory. One 
could have the error term in eq. (9) be proportional to X but we chose to have 
it constant over the entire range of X, as is assumed in the development of re- 
gression analysis procedures. A rather trivial problem arises once random errors 
are introduced. With ideal data, there is a point in common between the several 
sections (one to two) of Figure 1. Once random errors are introduced, there can 
no longer be a common point. The “nominal random point” was arbitrarily 
assigned to the lower or upper segment. 

RESIDUAL PATTERNS 

Examination of the residual pattern (Y  - P) or ( Y  - P)/SE, as a function of 
X is an important aspect of any regression analysis problem.26 If the correct 
model has been found for the data, the residuals will be randomly distributed 
about zero. Any nonrandom patterns in the residual indicates either an in- 
correct model or problems in the data (for example, temperature drift). Such 
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a drift might appear as residuals being nonrandom about a line other than 
0-0. 

Figure 3 shows a number of residual patterns, some of which indicate an in- 
correct model. For example, if the data lie on two straight lines connected or 
not by a curved section, and a quadratic model is used, the residual pattern shown 
in the right column of B or C will be found. In this case, the data must be reex- 
amined with a different model. 

Hence, by a series of successive approximations, choosing models of increasing 
sophistication, one tries to arrive in an objective manner at  a model which yields 
residuals random about zero. In practice, real data seldom respond as decisively 
as the ideal data of Figure 3. 

The simple linear model usually gives a clue as to a better model. Figure 4 
illustrates in more detail the RES/SE pattern for a first degree polynomial fi t  
to synthetic data consisting of two straight lines connected by a curved section. 
Using a straightedge, we draw straight lines AB and CD extended to intersect 
at  Ti. The curved section shows the N ,  data points of Figure 1. Since.points 
on the curve favor a polynomial fit they may be eliminated by inspection of the 
RES/SE plot before applying a model consisting of two straight lines. If a two 
straight line model is correct, the residual pattern for both lines should be random 
about zero. Likewise, the incorrect quadratic models in B and C of Figure 3 
provide a guide to a more correct model. The pointed cusp of the quadratic 
model in B indicates the single intersection region as does the rounded cusp in 
C or the double cusp in D. 

As the correct model is being approached, it is instructive to connect successive 
points in the RES/SE computer printout by penciled lines. The detailed pattern 

LINEAR 
-1 0 1 

Fig. 3. ResiduaWstandard error patterns based on linear and quadratic fits to synthetic data (with 
0.075% random error) developed according to the following models. (A) One straight line; (B) two 
straight lines; (C) two straight lines connected by curvature; (D) three straight lines; (E) a quadratic. 
A residual is defined as Y (observed) - Y (calculated). 
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Fig. 4. RES/SE pattern for linear fit to synthetic data consisting of two straight lines connected 
by a curved section. The apparent transition temperature Ti, is determined from the intersection 
of lines AB and CD. 

is more distinct and the number of crossovers from plus to minus (or vice versa) 
can be readily counted. The crossouers should be about half the total number 
of data points, except when the number of data points is small. Examples appear 
later in Figure 13. See also page 96 of Ref. 22. 

Figure 3 employed only five models out of a potentially much larger set that 
could have been chosen. A model for two quadratics was not treated via the 
synthetic data route since the derivative d V / d T  yields patterns very similar to 
those shown in Figure 3. The individual investigator can select other models 
which appear more suited to the specific nature of the data being considered. 
The magnitude of the random error and its variation with.X can also be selected 
a t  will. 

Details about Residuals 

Distortion of Residuals Patterns 

There are two situations in which the RES/SE printout pattern from the 
computer is distorted: 

a. Y values lie a t  nonuniform intervals along the X-axis. Our computer 
normally prints out RES/SE values for consecutively numbered data points with 
increasing X. If the temperature intervals between X values are equal, the 
pattern shown is equivalent to a plot of RES/SE vs. X. More generally, they 
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are non-equal, and this introduces some distortion. This is not serious for 
counting traverses, but may be misleading if the printout is used to estimate an 
intersection temperature as in Figure 4. 

b. If the ratio, total data points/total range in X, is very large, the computer 
gives a distorted pattern of RES/SE because of overcrowding. This is especially 
true when the pattern is very nonrandom. This observation was made by 
Keinath31 and may be a peculiarity of our computer system. 
In either case, the distortion is eliminated by preparing an actual plot of RES/SE 
against X or Y .  If X = T or T-l, an RES/SE against X plot is preferable. 

Higher Polynomials 

Another point to note is the residual pattern behavior on going to polynomial 
models of higher degrees than quadratic (or if the true function is not a polyno- 
mial but is being approximated by the polynomial). This is illustrated using 
the synthetic data consisting of three intersecting straight lines as in D of Figure 
3. When the slope changes between successive lines are small, such data may 
appear to the eye to be fitted ideally by a simple polynomial. Figure 5 shows 
a cubic model applied to the synthetic three-straight-line data. However well 
the visual fit may seem, the residual pattern states unambiguously that the cubic 
model is incorrect, as seen in Figure 5. Two further points follow about this 
specific set of synthetic data: 

a. The nonrandom pattern persists up to a fourth degree polynomial, changes 
a t  the fifth, and loses meaning for higher degrees. 

b. The two intersection temperatures are readily located as the minima in the 
residuals. This is brought out in Table I. Maxima in the table correspond to 
midpoints of straight line sections. Coefficients and standard errors for the 
several polynomials are listed in Table 11. 
We32 have found this useful in treating a set of actual physical data in which log 
70 is plotted against 1000/T, where 70 is zero shear melt viscosity. These data 
contained random errors larger than 0.075% and showed some curvature between 
straight line sections. This polynomial treatment on this one set of real data 
accomplished two important goals: It located intersections of pairs of straight 
lines, it showed that a higher degree polynomial was not the correct model. 

There is another important aspect in considering higher degree polynomials 

100 300 500 700 

Fig. 5. RES/SE pattern for a cubic model applied to the three-line synthetic data. 
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TABLE I 
Use of Higher Polynomial Models on Synthetic Three-Straight-Line Model 

Degree of Numerical magnitudes of maxima and minimaa 
Dolvnomial Max lb Min 1 c  Max 2d Min 2e Max 3f 

2 0.974 -1.7255 0.7442 -1.6892 0.9881 
3 0.9756 -1.7218 0.7443 -1.6930 0.9854 
4 0.4488 -1.6821 1.2339 -1.6534 0.4248 
5 R  - - - - - 

a See Figure 3(D), Quadratic, for nature of REUSE pattern. The values listed in the table are 

b Midpoint of L1 (180K) (should be 200K). 
for the residuals, Y - f'. 

Intersection of L1 and L2 (300K). 
Midpoint of Lz (400K). 
Intersection of LZ and L3 (500K). 
Midpoint of L3 (600K). 

g Method breaks down, for 5th and higher polynomials. 

as they apply to real data: They can give a false sense of certainty about the 
choice of a model. As the degree of the polynomial model increases, several 
things happen: 

a. Standard error in P gets smaller before going through a minimum. 
b. Coefficients of correlation, R ,  will increase. 
c. The computer program gives nonvanishing numbers for the coefficients 

of the higher order terms in the polynomial. 
d. The number of crossovers should increase as the model becomes more ap- 

propriate. 
In fact, a t  degree 3 and higher, the coefficients of successive terms in the poly- 
nomial usually begin to alternate in sign. The polynomial approximates the data 
as a limit. One should be wary of fits in which the signs alternate, and the 
coefficients of the higher terms become exceedingly small. In connection with 
polynomial models, the pioneering regression analysis work of Utracki should 
be mentioned.33 He examined published precision melt viscosity, 77, temperature 
data which spanned, in some cases 15 orders of magnitude in 77, He worked with 
several simple organic molecules and with plasticized PVC. As models he used 
theoretical, semitheoretical, and empirical relations which had been proposed 
in the literature as capable of representing 77 = f (  T ) .  His models included ex- 
ponential and polynomial functions of T. He found that (a) none of these 

TABLE I1 
Coefficients of Polynomial Fits to Three-Straight-Line Modela 

Degree of polynomial 
Term degree 2 3 4 5 

0 98.22 98.25 89.96 -8.624 
1 0.1054 0.1051 0.2241 1.641 
2 2.432 X 2.441 X -3.047 X loe4 -6.849 X 
3 - -7.813 X 9.994 x 10-7 1.297 X 
4 - - -6.251 X -8.187 X 
5 - - - 7.702 X 

Std. error in Yb 0.8402 0.8557 - 5.7198 

a Synthetic data with 0.075% random error. 
For a first degree fit, the standard error is 7.2332. 
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equations described 7 over the whole range of temperature, (b) standard errors 
were large, (c) residuals were nonrandom about zero in some ranges. The four 
compounds studied showed evidence for having one to four transitions. He thus 
provides additional cases of mathematical models which appeared to describe 
real data by earlier criteria, but could not always survive the residuals test. 

Two Straight Lines vs. Quadratic 

One set of models commonly used consists of a pair of straight lines compared 
to a quadratic. The two straight line case uses five parameters, the A’s and B’s 
of eqs. (1) and (2) and the assumed intersection point. The quadratic involves 
three parameters. This may give an advantage to the two straight line case. 

One possible way of judging the relative merits of the three and five parameter 
models is through the adjusted R2, as proposed by Hocking:28 

(10) 

where N is the number of data points and P is the number of parameters. With 
two lines, N is the total number of data points. For example, assume a total of 
eight data points with R t  = 0.99 and R ~ , L  = 0.995. From eq. (lo), R; (ADJ) = 
0.984 and R ~ J  (ADJ) = 0.9867. The two line model in this assumed case is ac- 
tually slightly better. 

It is clear from eq.(lO) that the adjustment is greater when N andlor R2 are 
small. We try to avoid cases where N or R2 is small. 

Another method is to compare two straight lines with a fourth degree equation 
so that five parameters are involved in both cases. 

R2(ADJ) = 1 - [ N / ( N  - P)](l - R2) 

COEFFICIENT OF CORRELATION, R 

Our computer program routinely calculates the coefficient of correlation, R ,  
defined as 

where 7 is the mean value of y. 
As implied above, we usually relegate R to secondary importance compared 

with residuaIs. We find that R may sometimes be quite misleading. For ex- 
ample, using the synthetic data set consisting of three straight lines gives for a 
quadratic fit, R2 = 0.99978. This quite high value, suggestive of a near perfect 
fit, resu-lts from a large number31 of quite accurate data points. However, the 
residual pattern, already shown in Figure 3(D), is decidedly nonrandom. R is 
mainly of value for regression analysis on simple data sets, such as one straight 
line or one polynomial. 

DERIVATIVES VS. REGRESSION ANALYSIS 

Simha and his c ~ l l e g u e s ~ - ~ ~  have long used derivatives, dYldX and d2YldX2 ,  
to locate weak and strong transitions along the temperature axis. His success 
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stems in large part from tailoring his data acquisition program to the derivative 
program in either of two ways: 

a. Frequent readings of L or V, say at  intervals of several Kelvins. 
b. Large scale plots of L or V vs. T with smoothed values read off a t  regular 

intervals of say, 5 Kelvins. 
This situation is rare in the literature. Too few data points a t  nonregular in- 
tervals are more likely to be found. 

Our computer calculates d Y/dX by the method of running averages first de- 
veloped for transition studies by Simha et al.9 We have several options, such 
as three, five, or seven consecutive running data points. Applied to the synthetic 
data, dY/dX gives ideal answers. With real data, we have frequently encoun- 
tered serious problems. 

Our experience has shown that one erroneous data point can cause either of 
two types of problems: If the point in question is too high, it introduces a false 
broad maximum in dY/dT; if the point is too low, it introduces a minimum and 
two apparent maxima. The obvious reason is that such an erroneous datum is 
used three, five, or seven times as if it were real. This cannot happen as seriously 
in regression analysis, where such a point is counted only once and tends to show 
up as a deviant in an RES/SE plot. 

Derivative programs can be quite useful, especially in those cases when re- 
gression analysis suggests the presence of one or more polynomial fits to a body 
of Y-T data. dY/dT appears to be reliable when the number of data points 
on either side of a suspected transition is several times the number of consecutive 
data points in the running polynomial used by the computer to calculate d Y/dT. 
An example appears later in Figure 12. Hand- or machine-calculated point- 
to-point derivations may be employed if the quality of the data is high. Other- 
wise, there is excessive scatter. 

Real vs. Smoothed Data 

Tabulated data of Y = f ( T )  are frequently smoothed. In such cases the 
original, raw data are plotted by the authors of the data on large scale and fitted 
with a smooth curve. Values of Y (smooth) are then read off at regular intervals 
of 5,10, or 20K. Such smoothed data may be ideal for some purposes but not 
for regression analysis for the following reasons: 

1. The smoothing process involves human judgment and the possibility of 
prejudice. 

2. It is impossible to judge the accuracy of the original data. 
3. Both the SE and the RES approach zero so that the computer in calculating 

RES/SE is forced to calculate O/O. It either refuses or gives illogical answers such 
as R2 > 1.0, or both. 

Smoothed data are therefore the equivalent of the synthetic data without error 
discussed earlier: a large number of “data points” regularly spaced. Some 
authors present both the raw and the smoothed data from which a comparison 
can be made. If the real data follow the Figure 1 pattern of two straight lines 
and a curved connecting section, a properly executed smoothing operation may 
not alter this pattern. Hence, the most serious resultant of smoothing is that 

4. Single “odd” data points may be overlooked. 
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real data containing random errors are converted to synthetic or pseudosynthetic 
data of essentially zero error. 

Interpretation of Intersection Temperature Ti 
Before discussing analysis of real data, it is important to express our philosophy 

about interpretation of computer located intersection temperatures, such as Ti 
in Figure 1. The presence of a Ti does not necessarily prove the existence of a 
molecular level relaxation or transition. It is desirable to have some additional 
evidence for a relaxation or transition. A t  Tg there is no problem since most 
properties change catastrophically. Property changes at  a weak secondary re- 
laxation may be subtle. 

The degree of confidence in a relaxation at  Ti will increase as the number of 
data points and accuracy of the data increases, as the sharpness of the slope 
change increases, and as the RES/SE plot approaches a characteristic recognition 
pattern. But when these criteria are all strong in V ,  H ,  or C, data, and one 
deduces that a transition or relaxation is present, it follows that such a transition 
must also reveal itself in other types of physical measurements. The appropriate 
measurements may not yet have been conducted, but should be sought. 

For example, Ref. 7 shows for polystyrene regression analysis of C,-T data 
(Fig. 5), V-T data (Fig. 61, and melt viscosity data (Figs. 8 and 9). Table I11 
lists a number of other physical methods showing evidence for a T > Tg transition 
in polystyrene. Similarly, Table I1 and Figure 8 of Ref. 8 illustrate regression 
analysis of V-T data on poly(methy1 methacrylate), showing two intersection 
temperatures, Tg and T > Tg while Table I11 lists results on eight other physical 
methods which reveal these same two transitions. 

In some cases, one can also apply a coherency or a consistency test. For ex- 
ample, if Y = f ( T )  data are obtained as a function of a polymer variable such as 
molecular weight or composition, and if the Ti’s obtained from such data change 
with said variable in a consistent and logical manner, it is plausible to conclude 
that each and every Ti is real and not an artifact. We have demonstrated else- 
where (Fig. 21 of Ref. 8) a case where intersection temperatures, Ti > Tg,  for a 
series of styrene-butadiene copolymers increased linearly with percent sty- 
rene. 

TABLE I11 
Summary of Ti (=Ta) Values by Different Statistical Procedures for PCPMA 

Temp Figure no. 
Model or method range Ti (“C) in text T;ITnd 

Linear a ca. 160 6 7  1.24 
Linear b ca. 145 8 1.20 
Quadratic b ca. 15OC 9 1.22 
Two straight lines b 149 10 1.21 
Two quadratics b ? 12 - 

dV/dT b 148 12 (inset) 1.21 

a -3O-21O0C. 
80-210°C. 
Crossover of residuals from + to -. 
(KIK): Common range of Tti/T, for many polymers is 1.20 f 0.05; extreme range is 1.10 to 1.30.7 
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V-T Data on Poly(cyclopenty1 Methacrylate) (PCPMA) 

As an example for detailed analysis, the set of mercury dilatometer V-T data 

1. It is published in tabular form in a readily accessible journal. 
2. 49 smoothed data points at 5K intervals from -30°C to 210°C are avail- 

able. 
3. The data appear quite reliable partly because of smoothing. Yet the 

smoothing did not obliterate any major transition. 
4. The data reveal three apparent transitions: Tp < Tg, Tg, and T > Tg. The 

authors recognized and discussed the latter two. They ruled out degradation 
as a source of the slope increase in the a-T plot above Tg and referred to it as 
a liquid-liquid transition. It is an unusually strong slope change for Tll. 

1. Following our recommended procedure, all 49 data points were plotted by 
the X-Y recorder for general inspection. Since all points seemed in order, this 
plot is not shown but the data points can be inspected in Figure 6. 

by Wilson and Simhal5 on PCPMA was selected for the following reasons: 

2. A linear model fit is shown in Figure 6. 
3. The residuals plot RES/SE is given in Figure 7. It appears to consist of 

four straight line segments, the middle two of which are connected by a curved 
section, as in Figure 1. Hand-drawn lines AB and CD intersect opposite data 
point no. 22 at 75OC, which is the Tg stated by the authors. A deviation from 
line AB starts opposite point no. 10, at ca. 15°C. This is Tp, which does not 
appear in the derivative plot of the authors (their Fig. 4). This gives a Tp/T, 
of 0.86 which is somewhat high for the general run of vinyl polymers but not 
unreasonably above the average of 0.75.5*6 A more pronounced slope change 
opposite point no. 39, ca. 160"C, appears to signify Tll for a TLJT, of 1.24. A 
more exact value of Tl1 is derived later. 7'11 is usually near (1.20 f 0.05) Tg.7 

I I I 
50 100 lS0  200 250 

TEMPERRTURE C 

m 
-50 0 

Fig. 6. Linear model fit to all 49 data points for poly(cyclopenty1 methacrylate), using the tabulated 
V-T data of Wilson and Simha.15 
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Fig. 7. Computer-printed residuals/standard error in Y(calculated), RES/SE, for the linear model 
of Figure 6. Temperature is increasing from top to bottom. Four straight lines are drawn along 
the RES/SE values with intersections near data points nos. 10,ll; 22,23; and 39,40, suggesting three 
transitions. The major transition near 7 5 O C  is Tg from intersection of AB and CD. 

4. A plot of data above Tg from 80°C to 210°C was prepared with a linear fit, 
but is not shown. 

5. Figure 8 represents the RES/SE printout for this linear fit of 27 data points 
between 80°C and 210°C inclusive. Comparison with Figure 3 does not yield 
a clear choice as between C, D, and E linear. 

6. We next test the quadratic model shown in Figure 9 which appears to the 
eye as an excellent fit. However, the outset to Figure 9 giving RES/SE clearly 
rules out the quadratic model. 
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Fig. 8. RES/SE printout for a straight line model to all points above Tg, namely from 80°C to 
210OC. The nonrandom pattern is somewhat inconclusive as between models C, D, and E for a linear 
fit in Figure 3. 

7. A model for two straight lines but with points on the curved connecting 
section removed is shown in Figure 10. Lines L1 and La intersect a t  ca. 149OC 
and appear to give a quite satisfactory fit. Had the quadratic model not been 
discarded, elimination of data points on the curved section might be a ques- 
tionable procedure. 

8. However, the RES/SE printouts for these two lines, shown on Figures 
ll(top) and (bottom), respectively, demonstrate distinctly nonrandom patterns, 
which don't match any discrimination pattern in Figure 3 (linear) except, crudely, 
E. 

9. Figure 12 shows the double quadratic model discussed in connection with 
Figure 2. As mentioned in the discussion of eq. (8), it would-be difficult to locate 
the intersection of these two quadratics, even with the quadratic coefficients 
available. The inset to Figure 12 represents dV/dT for these same data, clearly 
supporting the double quadratic model and indicating an intersection near 
148°C. 

10. As a check, Figure 13 presents the RES/SE patterns for the lower and 
upper quadratic fits. With seven and five crossovers, random patterns are 
confirmed. Tests for the number of crossovers are available. See Ref. 22. 

The existence of an intersection temperature Ti above Tg is thus amply con- 
firmed. It is most readily demonstrated by the two straight line model or by 
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Fig. 9. Computer drawn quadratic fit which gives the nonrandom RES/SE pattern shown in the 
outset, thus ruling out a quadratic. 

dVldT. However, its presence is indicated by the other devices used, as sum- 
marized in Table 111. 

0 

N 

0 0 

0 

0 

75 100 125 150 175 200 225 

TEHPERATURE C 

Fig. 10. A two-straight-line model fitted to data, with points on curved section not included. A 
Ti value near 149OC suggests a transition. 
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Fig. 11. Top, RES/SE printout for the lower straight line L1 of Figure 10; bottom, the same for 
the upper line Lz. Distinct nonrandom patterns rule out the two-line model. 

Meaning of Ti Values 

The regression analysis program just presented for PCPMA gives a rather 
detailed description of the tabulated data reported by Wilson and Simha.15 
Three intersection temperatures are suggested. The slope change near 75°C 
is so strong that this must be T, for this amorphous polymer. This is fully 
confirmed by the a-T plot of the authors (Fig. 4 of Ref. 15) in which a jumps 
from its glassy state value of 3 X deg-l 
above. 

Concerning the weak transition near 1O"C, we properly should have applied 
regression analysis in the temperature range of -30°C to about +4OoC. How- 
ever, since most vinyl polymers have a p process near 0.75 Tg,5Y6 there is little 
reason to question the identity of this Ti value. 

deg-l below 75°C to about 6 X 

TEST FOR Tg 
In the more general situation, especially with data on a newly synthesized 

polymer, one may not know the value of T, a priori. A set of data lying on either 
side of the 75°C intersection in Figure 7, sayfrom 25°C to 125"C, should be ex- 
amined, first by the linear and the quadratic models and next by two straight 
lines, possibly omitting the points on the curved section. These lines should 
intersect at  or near 75°C. The slope of line 1 (151) is the expansivity, p = dV/dT. 
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Fig. 12. Double quadratic as in the model of Figure 2. The inset shows the computer calculated 
first derivative, dV/dT, confirming the double quadratic model and locating the Ti at 148OC. Inset 
scale markers: vertical, 1 X cc-g-l-degW2; horizontal, 10K. 

&IVi, where Vi is the extrapolated volume at T I ,  gives q. If Ti is Tg, this value 
of a1 is ag and normally is close to 2 X deg-l. Similarly from LZ we get ,&. 
and a2. If Ti is Tg,  a2 = a1 and normally would be near 5-6 X deg-l. By 
the Simha-Boyer rule,34 AaTg should be about 0.11, where Aa = a1 - ag Also, 
alTg N 0.16.34 If the polymer in question has a strong secondary p relaxation 
below Tg,  ag will be greater than 2 X AaTg < 0.11, but alTg still should 
be close to 0.16.34 These criteria for Tg have been shown graphically in Figure 
10 of Ref. 6, which also includes the examples for semicrystalline polymers. If 
the polymer is amorphous and if alT1 is much less than 0.16, then Ti is not Tg. 
Failure to apply these numerical criteria may cause an incorrect assignment of 
Tg , especially for semicrystalline polymers. 

The main area of controversy concerns not Tg but the liquid state above Tg, 
for which polymer scientists generally expect V to increase as a smooth power 
function of T .  This view has been strongly expressed by Patterson et al.,35 who 
state, without supporting evidence, that density p should decrease above T, as 
T3. These authors ascribe past efforts by one of us (R.F.B.) to find intersecting 
straight lines in V-T data above Tg as “unwarranted and fruitless.” This 
controversy belongs elsewhere and indeed has been so t ~ e a t e d . ~ . ~  

Since we confirm by regression analysis the finding of Wilson and Simha by 
d VIdT of a sharp slope increase above Tg in PCPMA, and since such a finding 
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Fig. 13. Top, RES/SE random pattern for the lower quadratic 81; bottom, the random pattern 
for the upper quadratic Q2. Consecutive RES/$E points are connected in each case by light con- 
struction lines to emphasize crossovers of the 0,O locus. 
appears to flaunt conventional wisdom, one should repeat the question of Wilson 
and Simha about possible effects arising from thermal decomposition. 

Methacrylates are known to degrade thermally to monomer. Monomer in 
a dilatometer could have either or both of two effects: (a) If it volatilized, an 
exponential increase in volume should be observed arising from increased rate 
of production of monomer and increased vapor pressure, both with increasing 
T. (b) If the monomer remained dissolved in the polymer, thermal expansion 
would increase because of the greater free volume associated with the monomer. 
But again the slope change should be exponential as the rate of production of 
monomer increased with T. Since the volume increase above Ti is as a mild 
quadratic only slightly greater than linear, we agree with Wilson and Simha that 
thermal decomposition is not the cause of Ti near 150°C. They based their 
conclusions on other considerations. 

In addition, we have examined other types of physical evidence for a T > Tg 
transition in U - P M M A , ~ , ~ ~  i-PMMA,36,37 and poly(cyclohexy1 methacrylate).S 

We have included this discussion to elaborate on the distinction between what 
the experimental data tell us, namely, V = f ( T ) ,  as contrasted with how this 
might be interpreted. Both have been the subject of confusion and controversy 
in the past. We feel that the methods advocated herein can answer precisely 
what the physical data say. Regression analysis cannot tell what the data mean. 
Except for an unpublished DSC trace, we have not located other physical evi- 
dence for T L ~  in PCPMA. 
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OTHER REGRESSION ANALYSIS STUDIES 

While these regression analysis techniques were being developed, they were 

1. C,-T data on polyi~obutylene;~~ atactic PS;7 poly(pentene-1) and poly- 

2. V-T data on anionic PS7,8 and PMMA's of varying t a ~ t i c i t y . ~ ~  
3. qo-l/T on several atactic p o l y s t y r e n e ~ ~ ~ ~ ~  and polyi~obutylene.~~ 
4. Diffusion of organic penetrants through amorphous polymer~.~O 
5. P-V-T data on p o l y m e r ~ . ~ , 3 ~ ? * ~ , ~ ~  

None of these studies were as sophisticated as the present one on PCPMA. 
In addition to the above studies dealing with transitions, we have used re- 

gression analysis to obtain linear correlations of various polymer physical 
properties with cross-sectional areas per polymer chain as follows: Mooney- 
Rivlin constants;43 chain entanglements;u surface fold energy;45 chain stiffne~s;~6 
and tensile strength.47 

We applied regression analysis to isobaric P-V-T data for the liquid state 
of poly(n-butyl methacrylate), as shown in Figure 13 of Ref. 8. A T ~ I  transition 
was evident at pressures of 1-200 bars but was completely suppressed at  higher 
pressures. Isothermal V-P plots on PS, PIB, PVAc, and i-PMMA were able 
to reveal Tl1 and other liquid state transitions but did not require regression 
a n a l y ~ i s . ~ ~ . ~ ~  Development of a linear form of the Tait equation for isothermal 
V-P data does rely on regression analysis and 

tested on other sets of data as follows: 

(hexene-1);8 and several styrene-butadiene elastomers.8 

FUTURE PLANS 
The second paper in this series involves a detailed regression analysis study, 

already completed, on multiple trasitions in poly(viny1idene fluoride), based on 
unpublished length-temperature data of Mandelkern, Martin, and Q ~ i n n . ~ ~  
This polymer, with 45% crystallinity, is much more tractable than polyethylene, 
although its multiple transition behavior is similar, as will be emphasized. 

We have plans for a paper on C,-T and H-T data analysis. This does not 
involve any new principles of regression analysis but will emphasize physical 
differences over V-T data and will provide a guide to the available litera- 
ture. 

Other potential papers include a detailed study of V-T data on PS, isothermal 
V-P data on selected polymers, and V-T data on liquid hydrocarbons as an- 
alogs of PE. 

SUMMARY 
1. Computerized standard statistical procedures for linear and polynomial 

regression analysis have been organized into a routine for the analysis of physical 
data on polymers in the region of known or suspected transitions such as the glass 
temperature Tg,  sub-glass temperatures, and liquid state transitions above 

2. While the methods are general to Y = f ( X ) ,  emphasis in this paper is on 
X = T and Y = volume or length. Other variables with temperature or T-' 
include heat content and specific heat, zero shear melt viscosity 170, and diffusion 
constant DO. These have been examined elsewhere or may be discussed in 
subsequent papers in this series. 

Tg. 
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3. For simplicity, this paper considers data on amorphous polymers only, al- 
though a treatment of semicrystalline polymers follows. 
4. To assist in interpretation of unknown data, several models have been 

proposed: (a) one straight line, (b) two straight lines, (c) two straight lines 
connected by a curved section, (d) three straight lines, (e) quadratic, (f) two in- 
tersecting quadratics, (g) variations of the above. Sets of synthetic data for 
(a)-(e) were developed, containing a random error of 0.075% to simulate high 
quality real data. 

5. This synthetic data has been subjected to regression analysis to generate 
a set of discrimination patterns useful in testing real data of unknown charac- 
teristics. 

6. Main reliance is placed on residual patterns when checking a model against 
real or synthetic data. A residual, RES = Y(observed) - Y(calcu1ated) [desig- 
nated Y - p], and/or RES/SE, where SE is the standard error in ?, is printed 
out or plotted out against running values of X. 

7. A major goal has been to develop more objective procedures than simple 
visual inspection, thus permitting the analysis of unknown data in a manner freer 
from potential bias on the part of the investigator. 

8. Other standard statistical quantities are used where indicated such as 
coefficient of correlation and derivatives, dYIdX, d 2Y/dX2. 

9. Real data present more problems in analysis than do synthetic data for 
various reasons: (a) less accuracy, (b) too few data points in the region of a 
transition, (c) systematic errors such as a time or temperature drift, (d) general 
complexity of real vs. model behavior. 

10. This regression program attempts to define the course of a real body of 
data, Y = f ( X ) ,  regardless of imperfections in the data. Interpretation of the 
physical meaning of this data is beyond the scope of regression analysis. Personal 
intervention is required. 

During the 4-year period that this study of synthetic and real data has been in progress, four Re- 
search Assistants at  Michigan Molecular Institute (MMI) have assisted in data treatment and analysis 
with the computer. The first was John B. Enns, whose work lead to an appreciation of problems 
encountered with real data; the second was Kevin P. Battjes with whom the standard data sets leading 
to  Figure 3 and the specific stepwise procedure were developed. Steven E. Keinath has been re- 
sponsible for refinements such as computer plotting of RES/SE patterns against either X or Y. The 
current RA, Kathleen M. Panichella, has examined numerous sets of V,, - T data at  P = 1 to locate 
Ti1 in other polymers.39 We are indebted to Professor Robert Simha, Case Western Reserve Uni- 
versity, who first pointed out to us that the PCPMA data of Ref. 15 exhibited a transition above Tg 
Our colleague at  MMI, Dr. K.,Solc, has devised several special computer techniques including one 
to locate Ti1 by regression analysis of PVT data.42 One of us (R.F.B.) is indebted to Patterson et 

whose comment about us inspired this objective approach to data analysis. 

APPENDIX: SOURCES OF SPECIFIC VOLUME DATA 

For the convenience of readers Table IV lists key sources of specific volume-temperature data, 
not all of which were used in this paper. This is not presented as an exhaustive literature search. 
We have on occasion obtained from the original authors their tabulated L--T or V--T data, even 
though they published their results in graphical form. None of these sets of data was used herein. 
References to other published data may be found in the Simha-Boyer papers.34 We cite a few 
P-V-7' papers which give relative volumes only or which give P-V--T specific volumes at  only 
a few temperatures. These are cited in our P-V--T s t ~ d i e s . ~ ~ . ~ ~  In general, tabulated data are 
no longer published because of the pressure on journal space. Some journals, such as Macromole- 
cules, provide for making such data available in supplementary form. 
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TABLE IV 
Some Sources of Tabulated V-T Data on Amorphous Polymersa 

Temperature range 
(“0 No. of 

Polvmer From To temDeratures Ref. 

1. 
2. 
3. 

4. 

5. 

6. 
7. 

8. 
9. 

10. 
11. 
12. 
13. 
14. 

Polyethylene (branched) b,c,d 
Polyethylene (1inear)bpc.d 
Polyethylene (high mol. wt.; linear)blc.d 

Polystyrene (atactic)b 

Poly(orthomethy1 styreneIb 

Poly(viny1 acetate)b 
Poly(methy1 methacrylate)b*c (atactic 

PMMA) 
is0 PMMA 
is0 PMMAb 
Poly(cyclopenty1 methacrylate) (PCPMA) 
Poly(cyclohexy1 methacrylate) (PCHMA) 
PCHMAb8“ 
Poly(n-butyl methacrylate)b*c 
Polvdimethvlsiloxaneb~c 

19.1 
19.5 
18.7 
7.7 { 115.4 

{ 1;;:; 
-30 

17.2 

-35 

-30 
-30 

8.8 

18.6 
12.2 
25 

198.0 
199.7 
199.5 
75.4f 

195.6 
81.9‘ 

197.7 
lOOh 
159 

200 
190.2 
210 
220 
198.9 
199.5 
70 

8 (above T,) 
7 (above T,) 
6 (above T,) 

6 
8 

13 

48 
12 
49 
51 
17 
16 
4 

e 
e 
e 

g 
g 

h 
e 

I 

J 
1 

1 

e 
e 

k. 1 
Note: Hellwege et  aLm give PVT data in the form of relative volumes for polymers corresponding 
to 1 ,2 ,4 ,  and 7 above as well as hard PVC. Specific volumes are given at  one pressure and a few 
temperatures. Beret and Prausnitz” present PVT data as relative volumes a t  a few temperatures 
for Polymers 6 and 14 above and also polyisobutylene. Kubota and OginoO give PVT data as relative 
volumes for Polymer 14 above a t  five temperatures from 29 to 6OOC. 

a Atmospheric pressure unless noted; see footnote b. 
b Also V,, values a t  elevated pressure. 

Supplementary material, including full sized tables available from American Chemical Society. 

Included because of data on molten polymer. 
0. Olabisi and R. Simha, Macromolecules, 8,206 (1975). 
Data on either side of Tg omitted because of time effects. 

Smoothed data. J. E. McKinney and M. Goldstein, J.  Res. Natl. Bur. Stds., 75A, 331 (1974). 
Ref. 15. Smoothed data. 

R. N. Lichtenthaler, D. D. Liu, and J. M. Prausnitz, Macromolecules, 11,192 (1978). 
Similar data on six different molecular weights. 
K.-H. Hellwege, W. Knappe, and P. Lehmann, Kol. Z. 2. Polym., 183,110 (1962). 

See end of each reference for details. 

g Ref. 14. 

j A. Quach, P. S. Wilson, and R. Simha, J.  Macromol. Sci. Phys., B-9,553 (1974). 

” S. Beret and J. M. Prausnitz, Macromolecules, 8,536 (1975). 
O K. Kubota and K. Ogino, Macromolecules, 11,514 (1978). 
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